Abstract
Although zeolites are characterized by their special acidic properties, there is still no clear consensus on the effect of zeolite support acidity on the catalytic activity of supported Pd catalyst in methane oxidation. Herein, a series of Pd/H-ZSM-5 and Pd/Silicalite-1 catalysts was prepared by the deposition-precipitation method and used in lean methane oxidation. The effect of ZSM-5 support acidity on the catalytic performance of Pd/ZSM-5 was investigated. The results indicate that with the decrease of Si/Al ratio(x), viz., the increase of acid sites in H-ZSM-5(x), the catalytic activity of Pd/H-ZSM-5(x) increases substantially; the activity of various catalysts in the lean methane oxidation decreases in the order of Pd/H-ZSM-5(28)>Pd/H-ZSM-5(48)>Pd/H-ZSM-5(88)>Pd/H-ZSM-5(204)>Pd/Silicalite-1. Furthermore, various characterization measures reveal that the catalytic activity of Pd/H-ZSM-5(x) in lean methane oxidation is mainly related to the Lewis acid sites in the H-ZSM-5 support, whereas less relevant to the Brønsted acid sites. The abundant Lewis acid sites in H-ZSM-5 are capable to enhance the interaction between the Pd species and H-ZSM-5 support, which can inhibit the agglomeration of Pd particles and improve the dispersion of Pd species, and thus boost the catalytic activity of Pd/H-ZSM-5 in methane oxidation.